

Model-based testing

November2017 www.axini.com

- Who am I?
- Why MBT?
- What is MBT?
- MBT theory
- Conclusion

What do you want to hear?

Comparing levels of test automation

Axini MBT in a nutshell

- Goal: industrialize model-based testing (MBT) as a highly-rewarding step towards model-based engineering
- Foundation: 25+ years of R&D
- Result-driven and fully funded by commercial MBT
- Proven technology since 2007

 \checkmark Shorten release cycles, increase predictability

 \checkmark Prevent production issues

✓ Reduce TCO

Several high tech companies

- Technical interfaces and protocols
- Ease system integration: single truth for all parties
- Cover timing, parallelism, robustness, bad weather

Top-3 bank, top-3 insurer

axin

- Complex business logic with large data sets
- Cover unique situations, find hard to detect errors
- Simulate changes before implementing them

Single	From: Rotterdam Centraal	1st class	Full fare	Valid today	1 ticket	
Day Return	To: Amsterdam Centraal	2nd class	Discount	Open date	2 tickets	
5 Return ticket	To change route: press a white box above.		1847		3 tickets	
Weekend Return					4 tickets	
Railrunner 4-11 (incl.) years					Select number of tickets	
Other tickets	No					
Other tickets	via station					
Nederlands Englis	2 Sh					

Test case 1-10

Test case 1-30732800

Combinatorial explosion

The trouble with testing

axini

Data

Interaction

INFINITYINFINITY

Smart-lock

Testing parallel components

Combinatorial explosion

Theory: compositionality

- When you specify your components precisely
- And you test the components thoroughly in isolation
- Then you do not have to test the integration of the components

- When you specify your components precisely
- And you test the components **thoroughly** in isolation
- Then you do not have to test the integration of the components

Modeling in practice

MBT ingredients

Questions?

Transition Systems

out(s)={ $\lambda \epsilon$ $U_{\delta} | s - \lambda ->$ } (s after σ) = { s'| s $\overline{\sigma} =>$ s' Straces(s) = { $\sigma \epsilon L_{\delta}^{*} | s = \sigma =>$ s' }

 $\forall \sigma \in Straces(s)$: out(i after $\sigma) \subseteq out(s after \sigma)$

i ioco s =_{def} $\forall \sigma \in Straces(s)$: *out* (i after σ) \subseteq *out* (s after σ)

out(iafter?dub) = {!coffee}

out(safter?dub) = { !coffee, !tea }

i ioco s =_{def} $\forall \sigma \in Straces(s)$: *out* (i after σ) \subseteq *out* (s after σ)

i ioco s =_{def} $\forall \sigma \in Straces(s)$: *out* (i after σ) \subseteq *out* (s after σ)

But ?kwart \notin Straces(s)

i ioco s =_{def} $\forall \sigma \in Straces(s)$: *out* (i after σ) \subseteq *out* (s after σ)

i ioco s =_{def} $\forall \sigma \in Straces(s)$: *out* (i after σ) \subseteq *out* (s after σ)

out (i after ?dub) = { δ , !coffee }

out (s after ?dub) = { δ , !coffee }

i ioco s =_{def} $\forall \sigma \in Straces(s)$: *out* (i after σ) \subseteq *out* (s after σ)

axini

out (*i* after ?dub.?dub) = *out* (*s* after ?dub.?dub) = { !tea, !coffee } *out* (*i* after ?dub. δ .?dub) = { !coffee } \neq *out* (*s* after ?dub. δ .?dub) = { !tea, !coffee }

Our toolset

- · Data
- Time
- Functions
- Parallelism
- Non-determinism
- On the fly and off line test-generation
- Test-generation strategies
- Model-checking/validation
- Test-case analysis

Questions?

MBT: Effect on development

With MBT you find more bugs

axini

illustrative

Without MBT: long lead time

With MBT: short cycles, less rework

Boehm: cost of errors

- Early fault detection in specification
 - -Modeling
 - -Inspection
 - -Simulation
- Early fault detection in implementation
 - -Fast and thorough testing
- Ideal for
 - -Agile testing, regression testing
 - -Mission critical systems
 - -Certification

Questions?

