
November2017

www.axini.com

Model-based testing

http://www.axini.com
http://www.axini.com

Overview

• Who am I?

• Why MBT?

• What is MBT?

• MBT theory

• Conclusion

What do you want to hear?

Comparing levels of test automation

Development steps Manual Script MBT

Create specification   

Interpret specification   

Create model - - 

Create test  

Predict outcome  

Script test - 

Execute test 

Check outcome 

 manual step

 automated step

use the model

as specification }

Axini MBT in a nutshell

1. Digitize your

specification

3. Automatically generate

and execute full

coverage test

scenarios

4. Get insight into

system quality

5. Update and retest

with minimal effort

2. Validate and simulate

Introducing Axini

• Goal: industrialize model-based testing (MBT) as a

highly-rewarding step towards model-based

engineering

• Foundation: 25+ years of R&D

• Result-driven and fully funded by commercial MBT

• Proven technology since 2007

Customer base and motivation

Several high tech companies

• Technical interfaces and

protocols

• Ease system integration: single

truth for all parties

• Cover timing, parallelism,

robustness, bad weather

Top-3 bank, top-3 insurer

• Complex business logic with

large data sets

• Cover unique situations, find

hard to detect errors

• Simulate changes before

implementing them

Shorten release cycles, increase predictability

Prevent production issues

Reduce TCO

10

Test case 1

Single

From

To

1st

full

today

1

Test case 1-5

Single

From

To

1st

full

today

1 2 3 4 5 5

Test case 1-10

Single

From

To

1st

full

today

1 2 3 4 5 5

No date 2

x

Day return

Test case 1-30732800

Single

From

To

1st

full

today

1 2 3 4 5 5

= 30732800

No date 2

x

discount

2nd

Aalten
.
.
.

Zwolle

Aalten
.
.
.

Zwolle

2

2

392

392

5

x

x

x

x

x

Zwolle

Rail runner

Combinatorial explosion

QuickTime™ and a
None decompressor

are needed to see this picture.

1

A

.

1A

A B

2 B

23 2 B 1 C

Z X

1A

A B

2 B

23 2 B 1 C

1 A

1A

A B

Q B

23 2 B 1 C

Z X

1A

A B

2 B

23 2 B 1 C

1 A

1A

A B

2 B

Q3 2 B 1 C

Z X

8A

A B

2 B

23 2 B 1 C

The trouble with testing

Data Interaction

Smart-lock

17

?button

!open

?button

!closed

?button

!open

?button

!closed

?button

!open

?button

!closed <XML:open>

?button

!open

?button

!closed

?button

!open

?button

!closed

<XML:closed>

Testing parallel components

!door L open

?button R

!door R open

?button L

?button L

!door L closed

?button R

!door R closed

?button R

!door R open

?button R

!door R closed

!door L open

?button L

?button L

!door L closed

Combinatorial explosion

QuickTime™ and a
None decompressor

are needed to see this picture.

1

A

.

1A

A B

2 B

23 2 B 1 C

Z X

1A

A B

2 B

23 2 B 1 C

1 A

1A

A B

Q B

23 2 B 1 C

Z X

1A

A B

2 B

23 2 B 1 C

1 A

1A

A B

2 B

Q3 2 B 1 C

Z X

8A

A B

2 B

23 2 B 1 C

Theory: compositionality

Spec A

Component

A

Component

B

Spec B

Compositionality - theory

• When you specify your components precisely

• And you test the components thoroughly in isolation

• Then you do not have to test the integration of the components

Compositionality - theory

• When you specify your components precisely

• And you test the components thoroughly in isolation

• Then you do not have to test the integration of the components

Modeling in practice

behavior

workflow

interface

Step 1:

Combine and structure

Step 2:
Add missing information
Add bad/sad weather

Input:

Paper specifications

Missing knowledge

entity

behavior

workflow

interface

entity

31

MBT ingredients

Axini
Suite

SUT

test generation
and execution

test-evaluation

Adapter

simulation

Model

Questions?

Transition System

?coin

?button

!alarm ?button

!coffee

states

labels transitions

initial state

Transition Systems

Notation: ! = response, ? = stimulus

Transition System

states

34

Ioco, notion of correctness

out(s) = { λ ε Uδ | s –λ-> }

(s after ) = { s ’ | s ==> s’ }

Straces(s) = {  ε L*
δ | s ==> s’ }

Straces(s): out(i after )  out(s after )

35

 !coffee

?dub

?dub

?dub

i

 !coffee

?dub

s

!tea

out (i after ?dub) = { !coffee } out (s after ?dub) = { !coffee, !tea }

ioco

i ioco s =def   Straces (s) : out (i after )  out (s after )

Implementation Relation ioco
(sheets from Jan Tretmans)

36

 !coffee

?dub

s

?dub

?dub

 !coffee

?dub

i

!tea

?dub

out (i after ?dub) = { !coffee, !tea } out (s after ?dub) = { !coffee} 

ioco

i ioco s =def   Straces (s) : out (i after )  out (s after )

Implementation Relation ioco Implementation Relation ioco

37

ioco

?dub

?dub
?kwart

 !coffee

?kwart
i

!tea !coffee

?dub

s

out (i after ?dub) = { !coffee }

out (i after ?kwart) = { !tea }

out (s after ?dub) = { !coffee }

out (s after ?kwart) = 

But ?kwart  Straces (s)

i ioco s =def   Straces (s) : out (i after )  out (s after )

Implementation Relation ioco

38

 !coffee

?dub

i
?kwart

?dub
?kwart

?dub
?kwart

out (s after ?kwart) = { !tea } out (i after ?kwart) = { d }

ioco

i ioco s =def   Straces (s) : out (i after )  out (s after )

s
?dub

 !coffee

?kwart

!tea

Implementation Relation ioco

40

out (s after ?dub) = { d, !coffee } out (i after ?dub) = { d, !coffee }

ioco

 !coffee

?dub

t

s

i ioco s =def   Straces (s) : out (i after )  out (s after )

?dub

?dub

?dub

 !coffee

?dub

i

?dub

Implementation Relation ioco

41

out (i after ?dub.?dub) = out (s after ?dub.?dub) = { !tea, !coffee }

i ioco s

i ioco s =def   Straces (s) : out (i after )  out (s after )

i

?dub

?dub

?dub ?dub

!tea

?dub

?dub

 !coffee

?dub

s

 !coffee

?dub

?dub

?dub ?dub

!tea

?dub

?dub

?dub

?dub

!tea

s ioco i

out (i after ?dub.d.?dub) = { !coffee }  out (s after ?dub.d.?dub) = { !tea, !coffee }

Implementation Relation ioco

Our toolset

• Data

• Time

• Functions

• Parallelism

• Non-determinism

• On the fly and off line test-generation

• Test-generation strategies

• Model-checking/validation

• Test-case analysis

Questions?

44

MBT: Effect on development

0 50 100 150

Traditional

MBT

Effort (Tradional=100)

MBT

Design

Code

Test&Integration

With MBT you find more bugs

45

Development System test Acceptance test Production

Found bugs

illustrative

Bugs not found, but can be found with MBT

Without MBT: long lead time

Development System test Acceptance test Production

back

weeks

illustrative

months months

With MBT: short cycles, less rework

Development MBT Acceptance test Production

back

20x
1x

hours

illustrative

month

35 60 0

70 120 60 Standard: 250d

MBT: 95d

Boehm: cost of errors

49

Example: Production
problems are most

expensive to fix

Example: faults during
coding phase are cheap

(relatively) to fix

Example: faults in design
are cheapest to fix

50

Effect of MBT

• Early fault detection in specification
–Modeling

–Inspection

–Simulation

• Early fault detection in implementation
–Fast and thorough testing

• Ideal for
–Agile testing, regression testing

–Mission critical systems

–Certification

Questions?

