
Testing login process security of websites

Benjamin Krumnow

Benjamin Krumnow

Benjamin Krumnow

25th November 2017

Initial Project: "Shepherd"

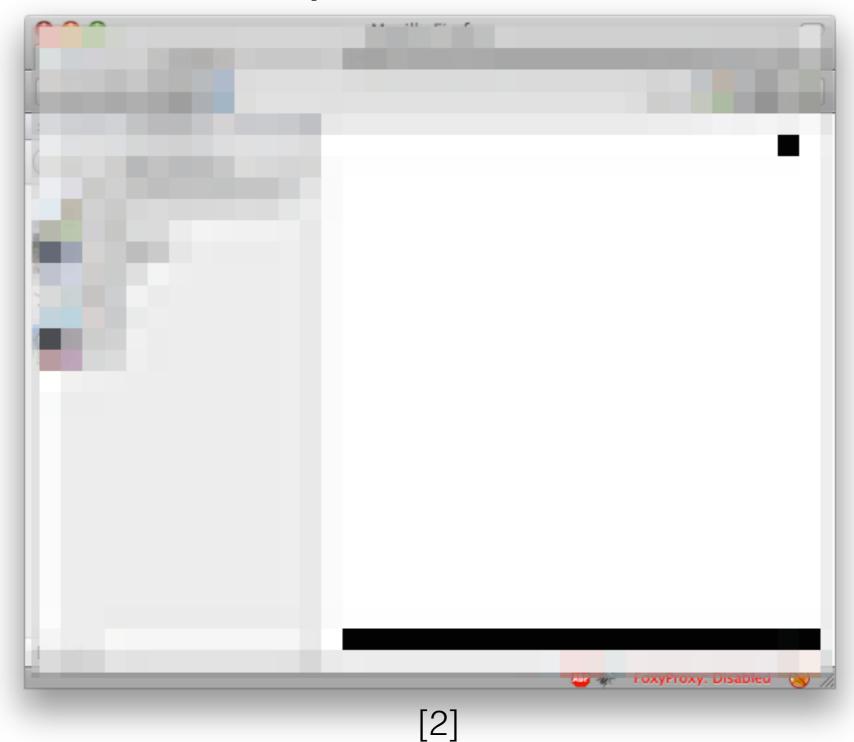
- Marc Sleegers, B.Sc., master student at the Open University
- Bachelor Thesis, March 2017 [1]
 - Counting Sheep Analysing online authentication security
 - Mentor: dr. ir. H.L. Hugo Jonker
 - Coordinator: dr. ir. H. Harrie Passier
 - Examiner: prof. dr. T. Tanja Vos, prof. dr. M.C.J.D Marko van Eekelen

Agenda

1. Background

- Firesheep
- Attack vectors in 2010 and now

2. Testing tools for research


- Tools for scanning
- Comparison between static and dynamic scans

3. Wrap-up

Motivation: Firesheep

- Background
- Testing websites
- Wrap up

Firesheep add-on in 2010

- Background
- Testing websites
- Wrap up

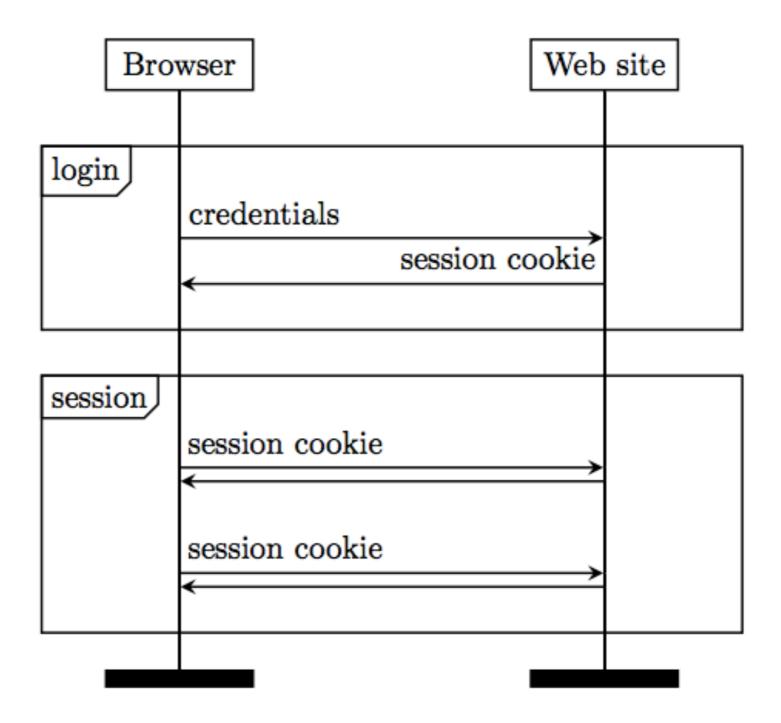
Hacking for everyone

000	P 1 1 / 55
the second se	
the second se	
10	
Done	En
	F 0]
	[2]

Testing websites

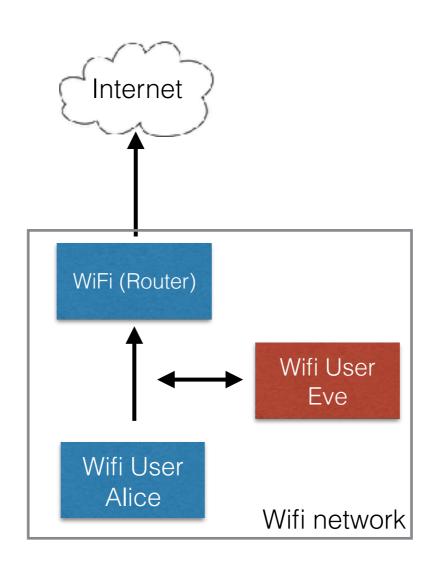
• Wrap up

Pressure on popular services


- It was easy to do for everyone, due to a browser add-on
 - Out of scope sides demand to write a script
- Huge media attention
- Affected Facebook, Google...and they fixed it:
 - Deployment of TLS (SSL)
- Security in WiFi Networks
 - WPA, WPA2

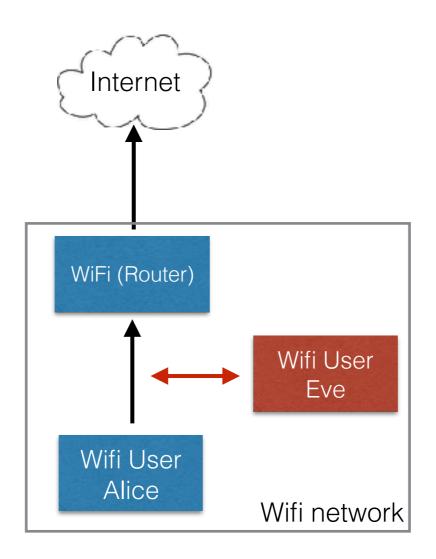
The attack "Cookie stealing"

- Background
- Testing websites


• Wrap up

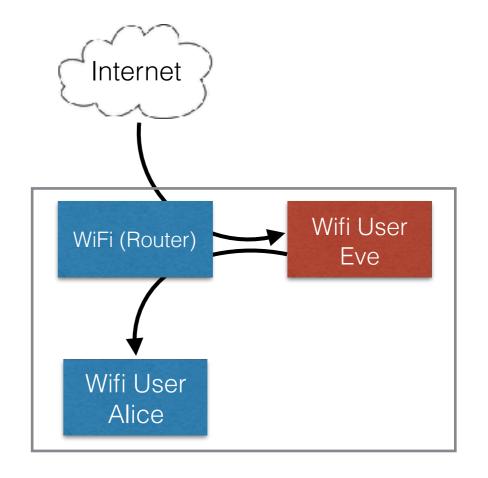
Login processes

How to eavesdrop on WiFi[•] ^{Background} in 2010


 Due to unencrypted and WEP WIFIs, promiscuous mode was often enough

- Background
- Testing websites
- Wrap up

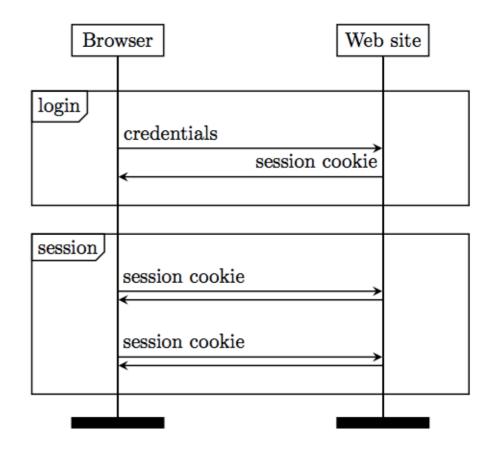
...and in 2017


- Deployment of WPA and WPA2
- Encrypted connections between access point/router and wifi users

- Testing websites
- Wrap up

Becoming a MITM

- Malicious access points
 - WIFI Pineapple Auditing Tool [4]
- Network attacks [3], e.g.
 - DHCP-based attacks
 - ARP spoofing
 - Still TLS/SSL encryption in place


• Testing websites

• Wrap up

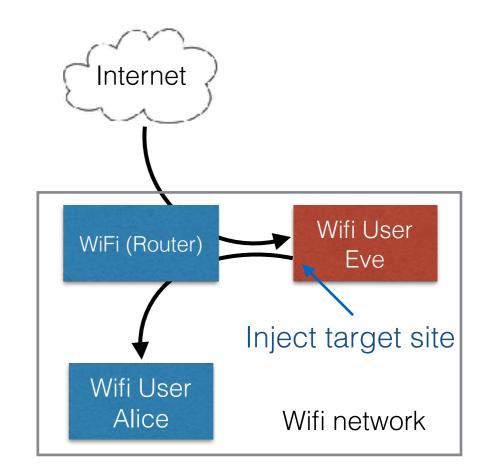
Attacks in 2017

1. HTTP only

- 2. HTTPS first, then falling back to HTTP
- 3. HTTPS, but the secure flag is not set
 - Transmitting the cookies also via HTTP requests

📘 🗧 🖒 📄 Cockies 👌 🍒 www.google.de

Name ~	Value	Domain	Path	Expires	Size	HTTP	Secure
HSID	APbLkxc2CYDB13z-u	.google.de	1	11/23/20	21 B	×	
NID	117=Rn6jAltpbEjluu1waWM9vt3ckO7AmCEx1ab1MCHqU8e56cqyJP	.google.de	1	5/25/201	250 B	1	
SAPISID	5M4bpWtoWNPzxz0F/AUDuVud24m3aHenPy	.google.de	1	11/23/20	41 B		1
SID	$cQU51_1NhvPeC3MiayoftrzlkHMeo9xbVpY2VYSamsFYIOHz9YnONED$.google.de	1	11/23/20	74 B		
SSID	Aodze1UdxSG1ewMPm	.google.de	1	11/23/20	21 B	J	v

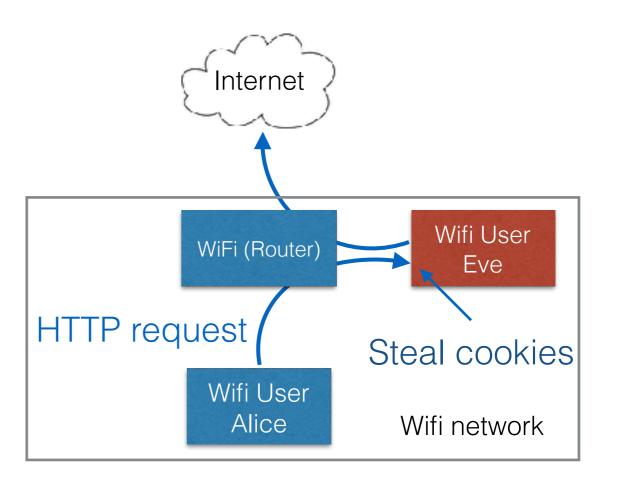

0

How to make another client's browser access a vulnerable site?

Cross-Site Request Forgery -Attacks

- Waiting for any HTTP traffic with a head element
- Injecting one or more URL(s) to target site(s)
- <link type="text/css" href="http://target_url/ style.css">

- No interference by noScript or HTTPSeverywhere
- 3rd-party-cookies must be allowed
 - Except Safari, this is the default setting



Background

- Testing websites
- Wrap up

Cross-Site Request Forgery Attacks

- Injection triggers request by the victim's browser via HTTP
- The request contains all the cookies for the target site, which is called
- Eve steals Alice's cookies \bullet

Testing Websites

• Testing websites

• Wrap up

Testing Motivation

- Goals:
 - Long known vulnerabilities in the web
 - How far has security of website login processes evolved?
 - Test validity of attacks
 - Measure the widespread of related vulnerabilities
 - Testing tools!
 - Selenium, PhantomJS, CasperJS,...

- Background
- Testing websites

Wrap up

Methodology

1.Need to login on websites to evaluate vulnerability

a. acquire credentials for websites

2. Build an automatic vulnerability scanner

- a. make a choice of implementation
- b. find login pages
- c. submit credentials to login
- d. evaluate login state
- e. check for existence of vulnerabilities

Where to obtain login credentials from?

• Testing websites

• Wrap up

Acquiring credentials

00	bugmenot.com	C	10+
		Ţ	

- Background
- Testing websites
- Wrap up

Acquiring credentials

- Restrictions
 - Paid-content accounts
 - Age verification
 - Opt-out
 - fraud risk associated sites
- Terms of use
 - "You agree never to access any form of networked device while not wearing happy pants." [5]

Scanners

• Testing websites

Wrap up

3 classes of tools

- 1. Static tools
 - Downloading the HTML(, javascript, css,...) file of a site
 - Parse HTML
 - Browser-based functionality from websites (such as JavaScript) will not be executed!
- 2. Headless Browser
 - Dynamic, executes JavaScript
 - Some lack functionality, e.g. PhantomJS [6]
 - Error prone
 - new development here: headless Chrome
 - Performance gain?

- Background
- Testing websites
- Wrap up

3 classes of tools

- 3. Full-functioning consumer browsers with automatisation tools
 - Dynamic, behaves like your real browser
 - Selenium (browsers are interchangeable, even headless)
 - Interactions are executed within the browser
 - Might be slower?

• Testing websites

Wrap up

Two Scanner Solutions

- Python-based scanner
 - Download the HTML file of a site and parse with BeautifulSoup
 - Website's script will not be executed!
 - No waiting for elements to be loaded
 - Performance!
- Python-based Selenium scanner
 - Load website within a browser and perform operations for that specific website
 - Interaction can be done via JavaScript or within Python
 - Far more possibilities
 - Side effects due to the dynamics in website
 - Slow because of waiting time

• Testing websites

• Wrap up

Detecting login pages

1. Scan for login fields (<input type="password".../>)

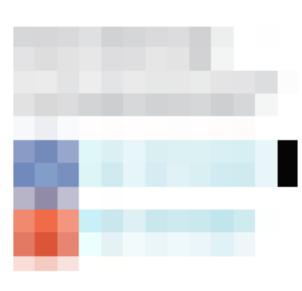
- Landing page
- <a hrefs*="keyword">, keywords = "login, signin, ..."
 - Translations
- Brute force -> www.example.org/login
- Sub levels of href

Testing websites

• Wrap up

Detecting login pages

- 2. Scanning with the dynamic version
 - Each single page load takes time!
 - Brace yourself! Traversing sites can be difficult
 - TimeOutException
 - StaleElementReferenceException
 - ElementNotVisibleException
 - OutOfBoundException
 - Popups, iFrames, Alerts


in the second		
	_	

Testing websites

• Wrap up

Detecting login pages #2

- 2. Scanning with the dynamic version
 - Range of logins
 - Social logins (many implications)
 - two-step logins
 - Clickable / interactive elements
 - Difficult because every element can be clickable
 - Tradeoff due to the scanner's speed!

- Background
- Testing websites
- Wrap up

Detect login forms

- Static
 - improved algorithm of the scrapy framework Rating
 - Login forms only
- Dynamic
 - Visible elements!
 - Higher range, due to not form-based login elements

• Testing websites

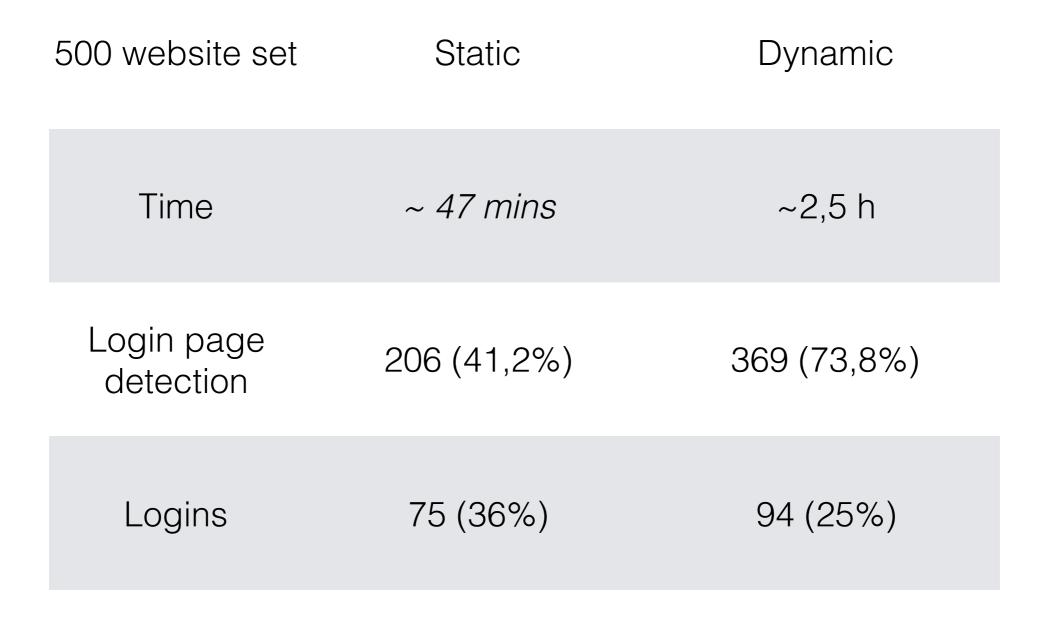
• Wrap up

Logging in

- Static
 - Submit a form
- Dynamic
 - Type credentials, be aware of changes
- Evaluate successful login
 - Cookies, 200 status code, visible login elements —> False positives
 - Re-accessing the site with login cookies

Testing websites

• Wrap up


Results

- Results of the Bachelor thesis (February 2017)
 - Credentials from the Alexa Top 500.000 (46,548 credentials of BNM)
 - 30.376 (~65%) "login pages" detected
 - 4.976 (~16%) successful logins
 - 3.996 (~80%) vulnerable sites
- Static improved version (November 2017)
 - Credentials from the Alexa Top 1M (59.626 credentials of BNM)
 - 9.330 (~32%) login pages detected
 - 6,741 (~34%) successful logins
 - 4.946 (~73%) vulnerable sites

• Wrap up

Comparison

Wrap up

	Summary	У	BackgroundTesting websitesWrap up
	Static	Dynamic	
Performance	Fast	relative slow	
Possiblities	Limited to static elements	Full consumer browser	
Complexity	Lower	Higher due to dynamics	

- Background
- Testing websites

• Wrap up

Securing your website

- Protect yourself (and your users)
 - Set secure flag on cookies
 - Deploy HSTS on your own servers
 - Deactivate 3rd-party cookies (not possible on iOS)
 - Use private browsing mode or delete cookies after each session

System	Browser	Default setting 3rd-party cookies			
iOS	Safari	Allow from web sites I visit			
	Chrome	Allow from web sites I visit. Non-			
		changeable in UI			
105	Firefox	Allow from web sites I visit Non-			
		changeable in UI			
	Firefox Privacy Mode	Session-based stored			
	Chrome	enabled			
Android	Firefox	enabled			
	Firefox Privacy Mode	Session-based stored			
Desktop browsers	Safari	disabled			
	Chrome	enabled			
	Firefox	enabled			
	Firefox Privacy Mode	Session-based stored			

Thank you

References

- [1] Counting Sheep Analysing online authentication security Marc Sleegers, March 2017
- [2] FireSheep

Eric Butler, 2010

https://codebutler.github.io/firesheep/tc12/, last seen 23th of March 2017.

- [3] A survey of man in the middle attacks. Mauro Conti, Nicola Dragoni, and Viktor Lesyk. IEEE Communications Surveys & Tutorials, 18(3):2027–2051, 2016.
- [4] The WIFI Pineapple Wireless Auditing Platform https://www.wifipineapple.com/
- [5] BugMeNot http://bugmenot.com/terms.php
- [6] A.: Online tracking: A 1-million-site measurement and analysis Engelhardt, S., Narayanan. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1388–1401 (2016)

References

- [7] Wikipedia Login page <u>https://en.wikipedia.org/w/index.php?title=Special:UserLogin&returnto=Main+Page</u>, last seen 24th of November 2017.
- [8] Skyscanner Login page https://www.skyscanner.net/, last seen 24th of November

Questions