Building Resilient & Sustainable Energy Supply Systems

Herman Eijdems (h.eijdems@mijnwater.com) Wilfried Ivens (<u>wilfried.ivens@ou.nl</u>)

Angelique Lansu (angelique lansu@ou.nl)

WWW.MIJNWATER.COM

Stimulators for Enhanced Resilience

- <u>Redundancy</u>: In technical terms, this means that certain components or functions are duplicated, so that the whole will continue to function properly if a component fails – the costs of redundancy must be assessed against the risk of failure/disruption
- <u>Diversification</u> of sources and customer profiles: variety of functions (living, working, industry, commerce, recreation) gives a better distribution in time for the energy needed and increased opportunities for interchange
- <u>Hybrid systems</u>: a combination of centralized with local supply (bottom-upor/and peer-to peer systems) gives fall back opportunities for local incidents and centralized infrastructure can be limited due to simultaneity advantage.

MIJNWATER, BASIS VOOR DUURZAME ENERGIE

W W.MIJN WATER.COM

Open Universiteit

Resilient Urban supply: centralized or localized?

Failures in centralized infrastructure

STROOMSTORING: 360.000 HUISHOUDENS GETROFFEN

Amsterdam Jan 2017, 340.000 households

Utrecht Feb 2017, 14.000 households

Fukushima March 2011

Is local the solution to this?

Resilient future energy scenario

Current roadmaps for greening the supply

There is a lot of effort in PV, wind, bio-energy, heat pumps and electric transport.

Problems (among other disadvantages):

- Hinderance (f.i. wind-turbines)
- Spatial restrictions (for biomass production)
- Fluctuating supply not matching demand (for solar, wind)
- Fine dust in cities

W.MIJN WATER COM

- Efficiency losses due to conversion and transport
- High dependency and loads on E-grid

MIJNWATER, BASIS VOOR DUURZAME ENERGIE

The need for changing in building related energy supply

So, the challenge for the energy transition proces is to:

- Save or generate by RES: 2.900 PetaJoule
- Eliminate: 185 mill. tons CO₂ per year

Within a time period of 33 years

884 PJ of gas consumption is distributed by the national gas grid to end-users
410 PJ of fossils is converted to electricity and distributed by the electricity grid
70 % of building related energy demand concerns HEAT

W.MIJN WATER.COM

1 petajoule = 1,3 million PV panels = 55.000 roots covered by PV

MIJNWATER, BASIS VOOR DUURZAME ENERGIE

Sustainable residential renovation concepts

PASSIVE HOUSE

Installations

- Balanced venting with heat recovery
- No cooling
- All electric

Unresolved:

architecture, high investment, high level of disturbance, overheating, bad CoP of HP's PASSIVE <-> SOLAR in common:

Measures envelope

· More/less insulation

Installations

- · Heat pump on outside air
 - Floorheating
 - PV solar panels
- Optional: Infrared heating
 - Electric boiler

SOLAR PV

Installations

- Natural venting
- Energy delivering

Unresolved:

architecture (glazed roofs), overheating, bad CoP of HP's, disbalance on E-grid

MIJNWATER, BASIS VOOR DUURZAME ENERGIE

WW.MIJNWATER.COM

Thermal storage key technology to support decarbonisation

House renovation concept; existing dwelllings

- 1. Measures envelope
- HR++ Windows € 5.000,-
- Insulated roof and floor € 4.000,-

Label F -> C; T_{radiator} from 90 -> 70 °C

Balanced venting with heat recovery € 5.000,-

Label C -> A; T_{radiator} from 70 -> 50 °C

3. Area energy support

- DHC source water 10 -> 30 °C € 15.000,-
- Heat pump € 5.000,-
- Avoided CV-boiler € 2.500,-

Label A -> energy neutral (A++++)

Open Universiteit www.ou.nl

Supply energy: 5G DHC grid in operation in Heerlen

Resilient Urban supply: centralized or localized?

Resilience in Sustainable Urban Energy Supply Systems

Natural gas and other fossils are powerful and flexibel energy sources!

In order to maintain resilient supply, while phasing-out fossils, a number of considerations is to be applied:

- Small energy flows need **fast** reaction and **intelligent** controls;
- Build **redundancy** by exploiting multiple (green) sources and cloud-structured connections;
- Generate as much energy as possible locally as long as financially and spatial viable;
- Build hybrid backup on local energy clusters from national infrastructure
- Utilize **buffer** capacity of DHC-grids and connected buildings;
- Provide **cooling** capacity for high/well insulated buildings;
- Utilize optimal cell balancing (exchange of energy) by clustering multiple demand profiles and waste energy sources;
- Gain low-hanging fruit on building/area/regional/national levels;
- Promote self-regulating systems;
- Promote end-user involvement.

MIJNWATER, BASIS VOOR DUURZAME ENERGIE

WWW.MIJNWATER.COM

Building Resilient & Sustainable Energy Supply Systems

Thanks for your attention

MIJNWATER, BASIS VOOR DUURZAME ENERGIE

WWW.MIJNWATER.COM